Byzantine-robust distributed sparse learning for M-estimation

نویسندگان

چکیده

In a distributed computing environment, there is usually small fraction of machines that are corrupted and send arbitrary erroneous information to the master machine. This phenomenon modeled as Byzantine failure. Byzantine-robust learning has recently become an important topic in machine research. this paper, we develop Byzantine-resilient method for sparse M-estimation problem. When loss function non-smooth, it computationally costly solve penalized non-smooth optimization problem direct manner. To alleviate computational burden, construct pseudo-response variable transform original into $$\ell _1$$ -penalized least-squares problem, which much more feasible. Based on idea, communication-efficient algorithm. Theoretically, show proposed estimator obtains fast convergence rate with only constant number iterations. Furthermore, establish support recovery result, which, best our knowledge, first such result literature learning. We demonstrate effectiveness approach simulation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates

In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures—arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving opti...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

ByRDiE: Byzantine-resilient distributed coordinate descent for decentralized learning

Distributed machine learning algorithms enable processing of datasets that are distributed over a network without gathering the data at a centralized location. While efficient distributed algorithms have been developed under the assumption of faultless networks, failures that can render these algorithms nonfunctional indeed happen in the real world. This paper focuses on the problem of Byzantin...

متن کامل

Adaptive M-Estimators For Robust Covariance Estimation

Robust covariance estimates are required in many applications. Here, a promising adaptive robust scale estimator is extended to this problem and compared to other robust estimators. Often the performance analysis of covariance estimators is performed from the perspective of the final application. However, different applications have different requirements, hence we make a comparison based on so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2021

ISSN: ['0885-6125', '1573-0565']

DOI: https://doi.org/10.1007/s10994-021-06001-x